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Bubble or drop distoﬁidn in a straining flow in two
dimensions

Jean-Marc Vanden-Broeck
Department of Mathematics, Stanford University, Stanford, California 94305

Joseph B. Keller

Departments of Mathematics and Mechanical Engineering, Stanford University, Stanford,
California 94305

(Received 21 January 1980; accepted 16 May 1980)

The distortion of a two-dimensional bubble (or drop) in a straining flow of an inviscid imcompressible
fluid is examined theoretically. Far from the bubble the stream function of the flow is assumed to be axy,
where @ is a constant. Within the bubble the pressure is assumed to be a constant Py, and the bubble
surface is assumed to have a surface tension 0. Then, the shape of the bubble depends upon the single
dimensionless constant y = 2(p, — p,)/(20a)*"’p'", where p is the fluid density, p, is the stagnation
pressure of the flow, and the size of the bubble is proportional to (20/pa?)'’’. For y large, it is found
that the bubble tends to a circle of radius (20/pa®)’? y~!. As y decreases, numerical solutions show that
the bubble at first becomes a square with rounded corners. Then, it develops four horns or spikes with
large curvature near their ends. Finally at y~ — 1.8, the two sides of each spike touch each other near
the tip and enclose a small bubble there. It is also found that there is a maximum value of the Weber
number above which there is no steady solution.

ALO 16997. £-m

I. INTRODUCTION AND FORMULATION finding the flow consists of determining x + iy as an

In the mixing of two fluids, a drop or bubble of one ?"?IY‘;:C f‘"ll°tl°'} <;f o thmh the halft;p;:ne > t0 satis-
fluid will be distorted and possibly split into smaller ying 5. (1) at in —0 en, the bubble surface is
parts because of the flow of the other fluid around it. given yfsettmg f’ = ;“ ; @+ip) and y(o + ﬂl)?,' and letting
In order to study this phenomenon, we consider the ¢ range from -3 to ;. The symmetry conditions re-

quire that the bubble surface be normal to the x and y

~di i d bble of one fluid
two-dimensional case of a drop or bu axes where it intersects them, which yields

in a steady flow of another fluid, assumed to be inviscid

and incompressible. We take into account the surface ¥, (- 3,0)= x,(§,0)=0 . (2)

tension ¢ at the interface, but we ignore the flow inside
the drop or bubble, assuming that the pressure is a
constant p, throughout it. From now on we shall write
“bubble” to mean either bubble or drop.

On the bubble surface the pressure in the fluid, which
is givenby the Bernoulli equation, must differ from p,
by ok, where k is the curvature of the interface. This
leads to the boundary condition

In order to formulate this problem we assume that the
stream function of the flow without the bubble is axy,
where a is a constant and x and y are Cartesian coor-
dinates. This flow is symmetric about both the x and y
axes, S0 we assume that the bubble and the flow around
it will have the same symmetry. Then, it suffices to
determine the flow only in the first quadrant x > 0,

y 2 0 (see Fig. 1).

We introduce dimensionless variables by choosing
(20/pa*)*’? as the unit length and (20a/p)*/? as the unit
velocity. We also introduce the dimensionless potential
function b¢ and stream function by. Here, b>0isa
dimensionless constant to be chosen so that ¢ =} and
@ =- 3 at the stagnation points on the x and y axes, re-
spectively. We denote the streamline along the two
axes and along the arc of the bubble boundary in the
first quadrant by $=0. In these variables ¥y ~xy and
b ~{x® = ¥%)/2 at infinity, so that b(@ +ip) ~(x+iy)*/2
or, equivalently,

x+iy ~(2b)"/ % + ip)t/? (1

at infinity. The flow occupies the region ¢ > 0 of the FIG. 1. The bubble, some stream lines of the flow, and the

@, ¥ plane, and the bubble boundary corresponds to the x and y axes are sketched. The x’ and y” axes, used in Sec. V,

segment — 3 < ¢ <} of the axis #=0, The problem of are also Indicated.
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~pg/2=p,-0k, on-i<@<3, P=0. (3)

Here, p,, p, and g are, respectively, the stagnation
pressure, density, and the speed of the fluid outside
the bubble. In dimensionless variables (3) becomes

@=k-y, on-i<@<i, ¥=0, 4)
where the dimensionless parameter y is defined by
¥ =2(0, - p,)/(20a P 32 (5)

The problem can be further simplified by requiring
the bubble to be symmetric about the line y =x. This
implies that

Y(=9,0)==x,(¢,0), -z<9<3. (6)
By using Eq. (8) we can restrict our analysis to the in-
terval O<g@ <.

1. REFORMULATION

It is convenient to reformulate the boundary value
problem as an integro-differential equation by consid-
ering the function

(o + W ¥x, +i,) - (b/2)'/3,

which is analytic in the half-plane $>0 and vanishes at
infinity as a consequence of Eq. (1). Therefore, on
=0, its real part is the Hilbert transform of its imag-
inary part. By symmetryits imaginary part vanishes on
¥=0, |[¢ >4 and therefore the Hilbert transform yields

wuzx’(‘p’o)_( )"’ 1 f‘/’ (w')" (w' @ Py (91,0 4,

L0 (—w')"’x.(w',o)

dor .
1/2 @Qr=-9

)

We now use the symmetry condition {6) to rewrite (7)
in the form

csor0=(2) "o

XI; (@)% (o, 0)( L ¢+—q;;1+—¢) dor .
(8)

¢-1/2

Next, we express the boundary condition (4) in terms of
x, and y,, noting that ¢ =b%(x% +y1)™". Then, (4) be-
comes
b2 -x
FoT ey, lel<h w0 @
L 4
Now, (8) and (9) together constitute a nonlinear in-

tegro-differential equation for y,(¢) in the interval
0<¢ <}, 1=0. The symmetry conditions

x,(3,0)=0, (10)

x,(0,0)=—v,(0,0), (11)

complete the formulation of the problem for y ,(¢,0)
and 5. This formulation of the problem, and the num-
erical method to be described follows closely the work
of Vanden-Broeck and Keller."?

1492 Phys. Fluids, Vol. 23, No. 8, August 1980

Il. NUMERICAt PROCEDURE

Before solving the problem we note that y ,(¢,0) must
be singular at ¢ =} like (3 — ¢)"*/2, Therefore, we eli-
minate this singularity by replacing ¢ with the new
variable B8 defined by

p=4-8. (12)
Then, we introduce the N mesh points 8, given by
Br=U-1)/2Y3N 1), I=1,...,N, (13)
and the N = 1 corresponding unknowns
. ay)
== I=1, ...,N=-1.
vi=(3 et 17D e (14)

If we define ¥, by (14) with I=N, it then follows from
(11) and (12) that

xp(Bfn o)=—y;[ . (15)

Now, we define 8y,,/,=(B;+8,.,)/2, and then consider
%4(Bra1/2:0). We compute it from (8) rewritten in terms
of B. However the integrand contains the factor (¢’)}/?
=(3-p2)/2, which has a singular derivative at §=2"/3,
In order to integrate this factor accurately, we replace
v, by (9, -9;)+y,, use the trapezoidal rule with mesh
point B; on the intervals containing y, — y;, and analy-
tically evaluate the integral containing yy. Then,
%5(Br4/2,0) is given in terms of the y .

Next, we compute ¥4(8,,,,0), %(Bp,/2,0), and
y8s(Bra/s2,0) in terms of the y; by using four-point dif-
ference formulae. From these expressionswe calculate
Ves %o and v, at (8, ,/5,0), by noting that

=.—y‘-
Ye=728
and
(x+ip),, = (x +iy) (x+iy). .

4 Y

Then, we substitute these expressions into (9) at the

N -1 points (8,,,,,,0), I=1, ..., N~ 1 to obtain N -1
nonlinear algebraic equations in the N +1 unknowns y;,
I=1, ..., N and b. The last two equations are obtained
from (10) and (15) by using three-point Lagrange extra-
polation formulae to evaluate their left sides.

The N nonlinear equations were solved by Newton’s
iteration method. For some large value of y, the initial
approximation for the bubble surface was taken to be
a circular arc, Iterations were continued until the
solution converged within a given tolerance. This solu-
tion was then used as the initial guess for a smaller
value of ¥ and so on.

After a solution for the y; and b converged for some
value of ¥, the profile x(8,0), y(8,0) was obtained by
integrating x, and y, . Typical profiles for various
values of y are shown in Fig. 2. Fory large the bubble
surface is cloge to a circle of dimensionless radius
y™'. For smaller values of y, the bubble surface is
close to a square with rounded corners. Asy decreases
further the bubble surface elongates in the directions
midway between the axes, developing four horns or
spikes.

J. M. Vanden.-Broeck and J. B. Keller 1482
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FIG, 2. Computed bubble profiles for various values of y.
These profiles were found by the method of Sec. III.

The efficiency of the numerical scheme was found to
be limited by the high curvature at the ends of the spikes.
Accurate solutions for y <-1.3 could not be computed
even with N =50. Thus, in the last section we shall con-
sider an analytical approach to determine the ultimate
form of the horns as vy is further decreased.

From the numerical solution we can calculate the
area A of the bubble and the potential energy V. The
potential energy V is equal to the surface tension ¢
times the length of the surface. In dimensional vari-
ables we have

204\ 1/3 2l/2 .
v=(3%) e[ e orie0rds, e

A =(:_;’,)'/’s(- j' 8, 08, 0) dB

+ %[y(B,O)ﬁ_z-x/z) ) (17

We also introduce the Weber number W defined by
W=AY3pa?/20)1/3, (18)

The integrals in (16) and (17) were evaluated by the
trapezoidal rule. The results are shown as functions of
v in Fig. 3.

We see that the potential energy V is a monotone de-
creasing function of y. However, the dimensionless
area A, which is equal to the square of the Weber num-
ber W2 is not monotonic but has a maximum at y ~-0.2,
Thus, the figure shows that there is a maximum or
critical value of W? above which there is no steady sol-
ution of the kind considered here. This maximum value
is W2~2.1. The existence of a maximum Weber number
has previously been found for a two-dimensional bubble
or drop in a uniform potential flow by Vanden-Broeck
and Keller,? and for a two dimensional drop in a Stokes’
flow by Buckmaster and Flaherty® and by Vanden-
Broeck.* In the three-dimensional case the correspond-
ing results were obtained by Moore,® El Sawi,® and
Miksis ef al.” for potential flow and by Rallison and
Acrivos® for Stokes’ flow.

There are two solutions for each value of the Weber
number in an interval below the maximum value. For

1493 Phys. Fluids, Vol. 23, No. 8, August 1980

the branch on the left of the maximum inFig. 3, the
potential energy V decreases as W increases, so this
branch is probably unstable. For the branch on the
right of the maximum, V increases as W increases, so
it is probably stable.

(V. SOLUTION FOR y LARGE

For y large we seek the bubble surface as a small
perturbation of a circle of radius y*'. Thus, we write it
in polar coordinates »,6 as

r=y-t+y=p(6)+ 00} . (19)
The curvature % of this surface is given by
k=y +y~p"(8)+ p(0)]+O("3) . (20)

Now, the unperturbed complex potential ¢,+ iy, is given
as a function of z=x+1iy by

Qo+ ily=22/2+1/2%27 (21)

From (21) we see that on the circle of radius y™, ¢,
=y~ cos 26 and, therefore, ¢,=— 2y sin20.

In the boundary condition (4) we use Eq.(20) for 2and the
preceding result for q,. The terms in ¥ lead to

p"(9)+p(6)=4 sin?26 . (22)

The solution p of (22) satisfying p’(0)=p'(7/4)=0, when
used in (19), yields the result

r=y1t_2(1+%& cosdd) "+ 0(y%) . (23)

We next substitute (23) into the definitions of V and A
and get

V=(20%/pa?)t? 2n(yt - 2y%)+ OG P) (24)
A=(20/pa®R/® 1y = &%)+ 0(y"%) . (25)

The formulae (24) and (25) agree with the numerical
results of Sec. I within 0.5% for y > 4.

A, W?
i /—\
1.

"

+ + + + Y

-10 -05 0. 05 1.0

FIG. 3, Computed valuer of the bubble area A [in units of
20/pa)*/?) and potential energy V [in units of (20 /pa?)'/3
as functions of y, based upon Eqs. (16) and (17). With this

choice of units the lower curve is also a graph of W2, the
square of the Weber number.
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T S




V. THE LIMITING SHAPE OF THE BUBBLE

When y is less than about - 1,3, the bubble has four
slender spikes. They are oriented along the lines y
= +x, as shown in Fig. 2. Because the spikes are so
slender, their shape can be found approximately by
using the slender body theory for bubbles presented by
Vanden-Broeck and Keller.? In lowest order, the flow
about a symmetric slender bubble is approximated by
the flow about a rigid plate lying along the center line
of the bubble. In the present case the center lines of
the four spikes consist of two straight line segments,
each of some length 2a, lying along the lines y=+x.
We introduce the coordinates x’, y' with axes along
these lines, and find the potential b¢(x’,y’) of the flow
about these plates, requiring that at infinity b ~(x2
-5?)/2. Evaluating this potential on the plate y' =0,
x'>0 we obtain

bo(x’,0)=(a% - x"4)/2 /2 , (26)

By differentiating (26) we find that the flow speed qon
the plate is

glx’,0)=x¥a* - x")2 x'>0. (27)

Before using ¢ to get the bubble shape, we shall deter-
mine the half-length a of the center lines. We do so by
requiring the suction force F, exerted by the flow on
the end of a spike, to balance the surface tension 2o0.

As we see in Ref. 9 [p. 412, Eq. (6.5.4)], F=7pA%/4.
Here, A is the coefficient in the expansion b¢ ~A»*/2

% cosf/2 in terms of polar coordinates with their origin
at the end of the plate. Upon setting F =20 and intro-
ducing dimensionless variables we obtain

A=4/n . (28)
From (26) we find that A%=4*, so (28) yields
a=(4/mp/? (29)

We next use (27) for ¢ in (4) and approximate the cur-
vature k by - n,,.(x"). Here, the equation of the bubble
is y’ =7n(x’) for x’,y’ in the first quadrant of the x,y
plane, i.e., for x’ 2y’ >0, Then Eq. (4) becomes

Nyege == 2"t = x"4) =y , (30)
At the end of the spike we require
7(a)=0, (31)

In addition, by symmetry, the bubble must be normal to
the y axis where it crosses that axis. In the primed
coordinates this axis is the line x’ =y’, and this sym-
metry condition becomes

Tl,'= -1 ’ (32)

where x' =n(x’),
Upon integrating Eq. (30) twice and using Eq. (31), we
obtain

M
[ - P -y —— e — -y - ’
n(x 17 -"3 "3 (a-x’) logla—-x")

-g:-—(awr')log(aw.f')-ﬁ;l log(a®+x'®)

ax . Ly , A a
rgtant T - Al —N-tr3

a a iy
+‘2— log2a+zlogza’-8— . (33)
1494 Phys. Fluids, Vol. 23, No. 8, August 1980
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FIG. 4. The ultimate form of the bubble at y=-1.8, when

opposite sides of each spike just touch one another and enclose
a small sub-bubble near the tip.

The integration constant 8 in (33) is to be found in order
to make 7(x’) satisfy (32). For each value of y, (32)
can be solved numerically for 8 by iteration. Then,

(33) gives the approximate shape of the bubble.

By solving for B in this way for various values of v,
and examining (33), we find that opposite sides of each
spike touch each other at y =~ 1.8. Then, each spike
contains a small sub-bubble near its tip, as shown in
Fig. 4. This profile represents the ultimate form of
our family of solutions, For smaller values of ¥ oppo-
site sides of each spike cross one another, which is
physically inadmissible. We could obtain physically
acceptable solutions for y< - 1.8 by allowing the pres-
sure in the sub-bubble to be different from that in the
main bubble. We shall not find them because they are
probably unstable. It is likely that the sub-bubble
would become detached from the main bubble if ¥ were
decreased below - 1.8.

Finally, we shall indicate how the preceding slender
body theory can be improved upon when it is used to
find a bubble with a sub-bubble at the tip of each spike.
We first replace each sub-bubble by a straight segment
of length I. Then, we calculate the flow around the main
bubble terminated by these segments, and the shape of
the main bubble, using the numerical method of Sec.
II. This yields a two-parameter family of solutions,
with parameters v and !. Then, for eachy we find the
l{y) for which the forces balance at the tip of each seg-
ment. Next, we solve the equation analogous to (30)
for the function 7(x’) which gives the surface of the
sub-bubble, requiring the surface position and slope
to be continuous where the main bubble meets the sub-
bubble. At last, we determine the pressure in the sub-
bubble by requiring that 7=0 at the end of the sub-bub-
ble. If this pressure is required to be the same as that
in the main bubble, we find the value of y corresponding
to the ultimate configuration shown in Fig, 4.
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